FACIS FAP-IoT-AI

IoT-AI Pipeline over trusted zones

Version / Date: 28-Sep-2025

Status: Idea / Draft / In Review / In Implementation / Released

This FAP demonstrates a federated data pipeline with IoT sensing and data collection, data transfer via data space connectors, data aggregation with data lake and AI based data analysis for dashboard visualisation

Purpose & Value

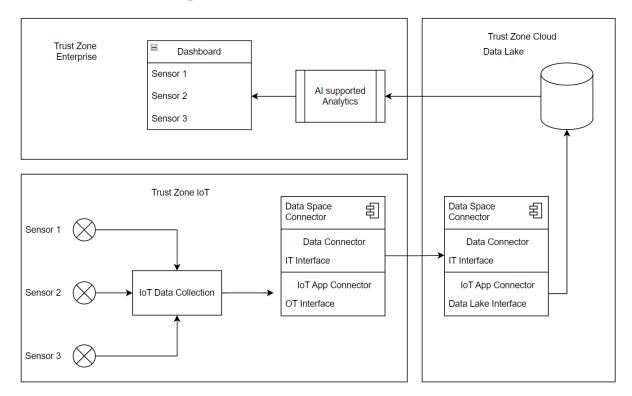
The goal of the project is to connect any IoT data sources with federated data spaces, data platforms and AI systems – standardised, modular, multi-tenant and fully operable on-premise or air-gapped.

The importance of this FAP lies in:

- Edge data gathering and multiple data channel management
- Standardized data transfer between sender and receiver, based on dataspace protocol
- Cloud enabled data aggregation
- Al supported data analysis
- · Result visualisation as dashboard widget per data channel

This FAP is essential to build a **trusted**, **distributed ecosystem data pipeline cross over domains with trust services**, making it easier for organisations to collect, transfer, aggregate and analyse data out of IoT environment and use services and resources across federated infrastructures.

Scope & Boundaries


In Scope:

- Unified data pipeline from Sensor to dashboard in federated eco systems.
- Full abstraction of data gathering, data transfer, data aggregation, data analysis and data visualization
- Integration of Widgets and AI via Orchestration Engine (ORCE)
- Integration with identity credential and access management (ICAM) for secure asset access.
- Usage of Trust Anchor und Policy Engine for data flow security

Out of Scope:

- Data space management
- Complex data analytics
- Shopfloor protocols
- Deep Integration

Architecture Building Blocks

Feature-FAPs:

- IoT Data Collection.
- Data Lake Management
- Al and Visualisation

Micro-FAPs (examples):

Data Space Connector

FAP Components:

- IoT Domain
 - Local Management of sensor data
- Data Lake
 - Consumption of IoT data streams and data persistance
- Al
- o Analytics of data and identification of thresholds
- Dashboard
 - Visual representation per data channel

XFSC Services:

- CAT (Catalogue): local data container for used services
- ORCE orchestration of FAP service and simulation IoT backend.
- AAS authentication & authorisation service.

- OCM/PCM (Credential Managers): For participant and principal credentials.
- TSA Trust Service API: Specify Policies for data connector and user actions

Standards & Protocols

- **W3C DID/VC:** Decentralized identifiers and verifiable credentials for asset provenance.
- OIDC4VC: Standardized flows for credential issuance.
- **DIDComm v2:** Secure communication between participants.
- Gaia-X Trust Framework: Compliance, trust anchor, and catalogue integration.
- JSON-LD: Linked data for standardized service metadata.
- OpenAPI / GraphQL service discovery and integration APIs.
- GDPR data minimisation and lawful processing of metadata
- Data Space Protocol

Reuse & Variants

The key abstraction are

- IoT Management Platform/ Shopfloor
 - Node-Red (https://nodered.org/)
- Data Space Ready Data Connectors
 - o https://dssc.eu/
 - (https://github.com/International-Data-Spaces-Association/idsspecification)
 - o https://projects.eclipse.org/projects/technology.edc
 - https://simpl-programme.ec.europa.eu/
- Data Lake Service for data collection and aggregation
 - o https://cloud.ionos.com/solutions/big-data
 - o Apache Spark, Kafka, Trino, HDFS, Superset
- Al supported Analytics
 - o https://cloud.ionos.de/managed/ai-model-hub
 - o Sovereign Al
- BI Dashboard
 - XFSC ORCE (Node-Red)
 - o https://github.com/eclipse-xfsc/orchestration-engine

Reusable Modules:

- Data Connector.
- Al Analytics.
- Dashboard UI.

Variants:

- Asset Adminstration Shell
- Multiple Data Space Implementations

Next Steps & Involvement

- Testing & QA IONOS Data Lake Services and Al Model Hub.
- **Pilot integrations** with Node RED IoT Platform.
- Community involvement: OSS contributors, Data Space Community, Manufacturing-X

Sample Scenario (Industrial IoT data pipeline)

Scenario: Predictive Maintenance for Manufacturing Robots

A large-scale automotive manufacturing plant uses a fleet of sophisticated welding robots on its assembly line. Downtime is extremely costly, so the company wants to implement predictive maintenance using sensor data.

Data Collection and Edge Processing

Data Source

- **Sensors:** Each welding robot is equipped with various IoT sensors collecting real-time data:
 - o **Vibration Sensors:** Monitoring motor and joint health.
 - o **Temperature Sensors:** Tracking the welding torch and hydraulic system.
 - Current/Voltage Sensors: Measuring power consumption and motor load.
- Data Format: The sensor data is collected at the robot's edge gateway.

Edge Connector

- Component: An Edge Data Connector is deployed on the plant's local network (the Data Space).
- **Protocol:** This connector adheres to the **Dataspace Connector protocol**. It acts as a trusted intermediary, packaging the raw data into standardized **Data Assets** and defining the associated **Usage Policies** (e.g., "Data can only be used for predictive maintenance analytics for 3 months").
- **Transmission:** The DC securely sends the data, respecting the established policies, across the internet to the cloud environment.

Cloud Environment and Data Lake

Data Ingestion and Storage

- Cloud Platform: The data is received by a Cloud Environment.
- Data Connector Endpoint: The cloud environment hosts a receiving DC
 Endpoint that validates the incoming data assets against the agreed-upon policies and contracts.
- Data Lake Services: The validated data is then ingested into the Data Lake.

- Aggregation: Data Lake services (like streaming ingestion tools) process the incoming high-velocity data, perhaps aggregating high-frequency sensor readings into 5-minute averages to reduce volume.
- Storage: The data is stored in its raw and semi-processed formats (e.g., as partitioned Parquet or Delta Lake files) within the Data Lake's inexpensive object storage. This provides a single source of truth for all historical and real-time robot data.

樳 Al Analysis and Visualization

AI Agent Analysis

- Agent Deployment: A dedicated Al Agent (a Machine Learning model service) is deployed, which has read access to the Data Lake.
- Analysis: The Al Agent is trained to perform time-series analysis and anomaly detection.
 - It analyzes the aggregated data (vibration, temperature, power) against historical baselines and known failure signatures.
 - Outcome: When the vibration frequency in a specific robot's joint motor exceeds a calculated threshold for three consecutive intervals, the Al agent flags it as an "Imminent Failure Risk" with a high confidence score.

Visual Result Presentation

- BI Dashboard: The AI Agent's analysis results (e.g., Robot ID, Anomaly Type, Confidence Score, Estimated Time to Failure) are fed into a Business Intelligence (BI) Dashboard service.
- **Visualization:** The dashboard presents:
 - o An **overview** of the entire robot fleet's health (a "Fleet Health Score").
 - Detailed charts showing the recent spike in vibration for the flagged robot.
 - A clear, visual alert indicating which robot requires immediate maintenance, allowing the maintenance team to schedule a fix before the component actually fails, thus achieving zero unscheduled downtime.